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ABSTRACT

• This thesis examines the problem of optimal aiming at

an imperfectly located point target and an area target in

which elements are uniformly or normally distributed. For

an analytical simplicity, a one-dimensional target is

considered and optimal aim points are determined when 2

rounds are fired.
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TABLE OF SYMBOLS AND ABBP.EVIATIONS

SYMBOL DEFINITION

A presented area
p

A vulnerable area
V

p(x,y) average chance of kill for a cell

Axay area of a cell

r distance from point of burst

a lethal range

9x (r) lethality function

x random variable of aim error on x-axis
a

1 : xa mean of xa

Ya random variable of aim error on y-axis

,ya mean of ya
0xa standard deviation of xa

-ya standard deviation of y

aa standard deviation of x ay a
(used when a a = a_-xa ya

xd random variable of impact on x-axis

Yd random variable of impact on y-axis

axd standard deviation of xd

-yd standard deviation of Yd
standard deviation of x,, y

(used when axd = dxd yd d

D random variable of ballistic error
x on x-axis

D random variable of ballistic error
y on y-axis
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SYMBOL DEFINITION

g(x) probability distribution of a target
element

conditional hit probability of single
PSSHIXg

shot with aiming realized at x in
one dimension a

conditional hit probability of single
aSSHI (Xa'Ya) shot with aiming realized at (x ,y

in two dimensions.

PSS '" conditional kill probability of single

SIXa shot with aiming realized at x in
one dimension a

"i )conditional kill probability of single
I (Xa'Ya shot with aiming realized at (x ,Y)-. a

in two dimensions

PK(n) salvo kill probability of a target
with n rounds

X bias of true location of a target

from origin

a, 0 standard deviation of X

p I(Ul,U2 .kill probability of a target with n
2" ... 'Tun rounds aiming at (Ul,u 2 ,...un)

a X standard deviation of existence of
elements

8.

.

i,8



I. INTRODUCTION

A. BACKGROUND

Artillery weapons are a key element of the combined-arms

team for modern combat. Many studies and experiments have

been conducted to determine the effective use of artillery

weapons and have contributed to the establishment of employ-

ment doctrine for them. Such system-analysis work has in-

cluded the development of quite complex, detailed Monte-Carlo

simulations of artillery systems. Nevertheless, a simple

combat model may yield a much clearer understanding of impor-

tant relations that are difficult to perceive in a more com-

plex model, and such insights can provide a valuable guidance

for subsequent higher-resolution computerized investigations.

Moreover, one can use such a simplified-auxiliary model for

understanding the basic dynamics and behavior of a larger-scale

complex-operational model.

This thesis follows this research strategy and uses a

simple analytical model to investigate optimal aiming at an

imperfectly located target. Botha point target and also an

area target (in which target elements are uniformly or normally

distributed) are considered. For simplicity's sake, one-

dimensional models are considered. Therefore, the results

obtained here should not be taken literally but should be

interpreted as insights into optimal aiming in cases of more

practical interest. Thus, t ere are still many unresolved

9



-problems concerning optimal aiming and the optimal expendi-

ture of ammunition (particularly in cases of uncertainty).

During the past twenty years, a large number of mathemati-

cal investigations have been carried out in two broad areas.

First, descriptive studies have investigated the effectiveness

of attacks on point and area targets by weapons having various

systematic errors and destruction capabilities. Second,

normative studies have investigated the optimal allocations

of weapons against a group of point targets and for the de-

fense of a group of point targets.

This thesis considers both these areas; it develops a

descriptive model of artillery fire effectiveness (i.e.,

- develops an expression for engagement-kill probability), and

then it determines the optimal aim points (when two rounds

are fired) to maximize fire effectiveness. Both point and

area targets are considered. In this thesis, a point target

is defined as a target whose size is small enough for it to

be killed by a single round (i.e., the target is very small

compared to the lethal area of a round). An area target is

defined as a target whose size is too big for it to be killed

by a single round (i.e., the target is much larger than the

lethal area of a round).

B. VULNERABILITY CONSIDERATIONS

Vulnerability El: pp. 15.1-15.15] of a target may be

defined as the characteristics of a target, which describe

its sensitivity to combat mechanisms. Therefore, the

10



vulnerability may be described as a function of the damage

producing properties of the attacking weapon and the physical

properties of the target. Thus, vulnerability involves

considerations of a stochastic or probabilistic nature, which

in turn will depend markedly on the conditions of both the

attacking weapon and the target in the combat environment.

Conventionally, vulnerability is expressed in terms of

an area of a volume for a given attack direction, for par-

ticular or specified conditions of the engagement of a weapon

against a target. Because of the stochastic nature of this

mechanism, it is necessary to describe the chance of damage

on the target in probabilistic terms. Specifically, the

probability of damage is determined by taking the vulnerable

area of a target for given attack directions and dividing it

by the presented area, which gives the conditional probability

that a hit is a kill; i.e., p(KIH).

The determination of vulnerable areas of a target may

be described as follows.

Ax

Ay

Fig. 1. Vulnerable Areas

A v = p(x,y)AxAy, where p(x,y) is the average chance of
Sxy

kill for a cell. Thus, Av is a computed area obtained by

• IV
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weighting suitable small areas by the conditional chance

that a hit is a kill and summing those weighted cells over

the whole presented area of the target.

A
p(KIH) ap

p

This notion of conditional kill probability may be extended

to the case where a target is killed by the shrapnel of

artillery ammunition. It should be noted that determination

of A is a long and detailed experimental process.
V

C. LETHALITY FUNCTIONS

Vulnerability is ordinarily a term used for the case

where actual hits are obtained on a target such as tanks and

aircraft. Lethality [1: pp. 15.1-15.151, on the other hand,

refers primarily to the case where lethal or incapacitating

fragments are projected over an area on the battlefield to

incapacitate personnel. An artillery projectile is usually

detonated on the ground or in the air, and consequently

project lethal fragments over a large area. Such a projectile

can still be effective even if it deos not hit the target

V. directly but merely detonates near the target.
h-. In order to represent lethality in a functional form, the

U.S. Army's Ballistic Research Laboratories have done exten-

sive experimental work for a large number of weapon-target

pairs. 't has been observed experimentally, by counting

perforations in wood panels placed at various distances from

p. 12U
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the point of burst, that the number of fragments above a

specified threshold tends to decrease as an exponential

function of the distance from the point of burst. Since the

shrapnel kills by Its kinetic energy, this leads to a

lethality function which is a negative exponential of the

distances from the point of burst. Gaussian lethality function

[2: pp. 9.1-9.6] is defined as follows:

4r) =p(target a round detonates at

killed distance r from the target )

r2

2a'

where a is a lethal range. It should be noted that this

lethality function depends on both the weapon system and

target type.

There appears to be no consistent or universally accepted

way of defining lethal range, a. The following are commonly

used.

a = f0 r)dr
0

a = /V'7f Z(r)dr
0

a is solution to Z(r) = .5.

So, when one is given a number as a lethality, he must find

4 out how it is defined. There is another type of lethality

13
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function called 'cookie cutter' which is defined as fellows.

P 0  for 0 < y R

9.(r)

I1.

P0

0 
R

Fig. 2. Cookie Cutter Lethality Function

D. ERRORS AND PROBABILITY DISTRIBUTIONS

1. Pattern of Impacts [1: pp. 13.1-13.121

In the firing of artillery weapons, the results are

a two-dimensional pattern of impact points which exhibits an

amount of scatter depending on the locating error of target,

aiming error and ordinary ballistic dispersion. This two-

dimensional pattern gives rise to various measures of disper-

sion and these measures of dispersion include sample standard

deviation in each direction, extreme horizontal (vertical)

dispersion, the mean horizontal (vertical) deviation, and

. the radial standard deviation, etc. It is important to note

* that the expected values of these various measures of dis-

persion depend on the sample size or number of rounds. That

*i  is, a group of several shots fired from a weapon represents

a sample of rounds from a lot of ammunition, or a population

14



in statistical terms so that the scatter pattern will vary

from one group to another. It is this random variation for

us to model in order to estimate the probabilities of hitting

a target.

The round to round ballistic dispersion and the move-

ment of the center of impact during firing a group of rounds

affect the probability of hitting a target. As far as is

known, the round to round ballistic dispersion remains rela-

tively stable even though the center of impact may vary in

some unpredictable manner. It has been observed that for

the rifles fired at vertical targets pattern of impacts is

nearly circular, whereas for the case of artillery weapons

pattern of impacts is non-circular: i.e., dispersion in

the range direction is considerably graater than that in

deflection.

2. Probability Distribution for Errors [2: pp. 10.1-10.5]

We may think of the factors that affect the impact

as being errors, and these errors, expressed as a misdistance,

are considered to be the sum of the following random variables.

misdistance = (Target location error + aim error) +

ballistic error

For convenience, all these errors are assumed to have proba-

bility distributions like, p(x < X < x+dx) = f(x)dx. Addi-

tionally, target location error may be combined with aim error

and called again 'aim-error'. These errors can be described

graphically as follows.

15



yA (x diydi )

,.-x I y"-5a

0 x

. Target element is located at (x,y)

• aiming is realized at (xaYa )

• ith round lands at (xdiydi)

Fig. 3. Error Description

a. Distribution of Aim Error

The aim error, a random variable denoted as (xy),

is normally distributed with mean (p xa' 1ya) and standard

deviation (axa'Oya)"

Probability distribution for xa:

• 1 (X-xa 2

1 xaf(x aox) = e
a xa xa V r- xa

Probability distribution for ya:

ya

ay

16
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Joint probability distribution for (xa,ya):

1 ( 2a 2 aa Ya- va
a' a

f(xY) = 1 e xa ya

aa 2 aa a -
"ya

p is a correlation coefficient between x and ya-

If it is assumed that p =0 and axa aya aa

then the joint probability distribution will be simplified

as follows.

_ a-xa) 2 Ya a

f:-y)1 0xa ya
aa =

a

b. Distribution of Ballistic Error

Components of ballistic error, Dx and D , may be

defined as follows.

Dx = Xd -xa

D =Yay Yd

The ballistic error, a random variable denoted as (D ,Dy), isx y

normally distributed with mean (0,0) and standard deviation

(Oxaaya). Therefore, the random variables, xd and Yd' are

normally distributed with (Xa Ya) and standard deviation

17



- xaiya) The probability distribution for xd is:

1. d-xa 2

fx xa1 e xd
f(xd: XaOxd) _ e

xd

The probability distribution for Yd is:

I 1 Yd-'a 2

f(yd: Ya'ayd) 1 e ayd
(d , yd

The joint probability distribution for (xd,yd) is:

- x a- 2+(Yd-Ya) 2 _ xd-xa Yd-Yal
e 2 am Xyd

f (xd yd) e
27Tad 1-p 2

p is a correlation coefficient between xd and yd' If it is

assumed that p = 0, then the joint probability distribution

will be simplified as follows.

1-Xd Xa 2 Yd-y a  2

= 1 e xd yf(xd,yd) 27TaxdOyd

E. TARGET DENSITY CONSIDERATION

Target density is defined as the probability distribution

of elements in an area target.

18



p(an element exists between x and x+dx) = g(x)dx

where 4(x) is the density function of an element. Target

- - density is involved where it is desired to obtain the expected

" kill probability of an area target. This thesis examined

two cases of target density: i.e., one for the uniformly

distributed area target and the other for the normally dis-

tributed area target.

19
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II. BASIC MODEL

A. HIT PROBABILITY MODEL

1. One Dimensional Model

The chance of hitting a target is, in large, dependent

upon the aim error (with target location error) and the

delivery error.

-L 0 x xd L

Fig. 4. One Dimensional Hit Pattern

Here the assumptions are:

1. A firer aims at the center of mass (origin) but he

makes an aim error xa.

2. A round lands at xd.

PSSHj x = p(Hitlaiming realized at xa)
d a

L" 1 2d-Xa d

- e dx
dd

-~L /c d

If there is no bias in aim, xa = 0, and the standard deviation

of ballistic error is large as compared to target size, small

*20
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target approximation will be as follows.

PSSHIx - 2L:- a V77 'U

2. Two Dimensional Model

,y

x

Fig. 5. Two Dimensional Hit PatternIJ I
Using the same assumptions as in the one dimensional

model, pSSHj(XaYa) will be defined as follows.

PSSHI (x, p(Hitlaiming realized at (x aya))
SHXaa)a a

1, xd-x_, 2+y- a 2_ xd -yya]
•~~+ a 2p ff1ea t ' o o  xd ayd xy

A2xya- 2

Here, A is the area of a target and p is a correlation coeffi-

cient between xd and Yd" If there is no bias in aim, xa =Ya

= 0, and (axdoyd) are large as compared to the size of a

21a



target, and the small target approximation will be as

follows.

z A
' ~PSSH I(x ya a "a ya xd yd

For a rectangular target, p 0.

x 2 yd-ya 2

.SSH j (XY) A xd yd
a aA xd yd

For a circular target, p= 0, xa = Ya = 0, and xd = yd = d '

-.? 2 2xd+d

PSSHI (xaY) - ff e 'd dddYd

A 2dra d

1

e d

where R is the radius of a circular target.

B. KILL PROBABILITY MODEL

1. One Dimensional Model

The chance of killing a point target is dependent

upon the chance of a hit, the damage mechanism of the projec-

tile and the vulnerability of a target. For developing a

model, Gaussian lethality function is used instead of cookie

cutter type lethality function, and this will lead to a more

tractable analytical result.

22



= a rou~nd lands betwn). (a round lands ber-
PSSKI Xd and Xd+dXd ' p tween xd and XddXd d

- 2 xl d- 2
S (X.f(Xd: xa)dXd_ 1 1- d e d

CO 5
(d (d: xa'xd d fje d x

Simplifying the above formula, the following result is obtained.
2

a a+cd(1PSSKIx [a: 9.2-9.41 = e
a

2. Two Dimensional Model

Two dimensional model is simply an extension of the

one dimensional model. Assuming there is no interaction

between x and PSSK(X will be as follows.
bewe d anYd' aSX~x'

-1 Xd-Xa 2 (yd-Ya 2 1 x2Yd

PSSK (Xaya) f -c xd 0y e dxdd7d

r Simplifying the above formula, the following result is obtained.

:.- 2  2

_ a 2a

PSSK i(X.'Ya = F a -( +- -T 2
___________.

.4, For the case of circular normal ballistic error,
t."' -- Cd' then

'xd =yd dt

S.23



2 2

2 2 2

a a a+ad

If there is no ai~m error, xa = a 0, then

2a
PSSKI(xa~a y 2~o 2 PSSKlXa=O'PSSKIya=0

It indicates that the two dimensional kill probability is

just the multiplication of the one dimensional kill probabili-

ties in this simple case.

24
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III. SALVO FIRE MODEL (POINT TARGET)

A. INTRODUCTION

Sometimes, it is not possible to destroy or neutralize

many targets with single round because hit probabilities

may be too low, some targets maybe too large in size, rela-

tively invulnerable, or lethality per round is often insuffi-

cient. In these cases where the kill probability per round

is too low, several or many rounds must be fired sequentially

at a target or with some pattern of aiming dispersions, if

suitable damage is to be accomplished. In this chapter, kill

probability models of salvo fire (firing n rounds sequen-

tially at the same aim point) will be examined.

B. ONE DIMENSIONAL MODEL

Assumptions used in this model are:

1. Aim errors and delivery errors follow normal distributions

as defined previously.

2. A firer engages a target with center of mass at the

origin.

3. Use a common aim point for n rounds.

4. Use Gaussian lethality function.

5. Cumulative damage is negligible.

6. Sequential delivery errors are independent.

The salvo kill probability of n rounds is defined as follows:

PKIx (n) - p(kill target with n roundslaiming realized at xa)
a n

= 1 - (1 - PssKxa n

4j 25



Since PSSKIx was given in the previous chapter, unconditioning

a
the above expression on aim point xa gives the followir~g

result.

n K-i
PK(n) [2: 10.10-10.15] = a- (K) ( a 1

K=Ia

222
a +0d+KO2

de a (3)

Examination of this result indicates that PK(n) has maximum

value when a = 0; i.e., when a firer makes no aim error,

PK(n) has the following value.

n K-I
= (n) a [ ( )_ 1

KK=1 K 2I' 2a2 2
fa+ad Va d aK

C. TWO DIMENSIONAL MODEL

It has been observed in the real world that observers

tend to have a greater aim error in range than in deflection,

and this greater range dispersion can also be seen in ballis-

tic errors. Hence, it is desirable to develop a two dimensional

model in which the probability distributions of random variables

are elliptical normal; i.e., p xa # Uya, axa # aya' and

axd 0yd° The assumptions from the one dimensional model are

"4 used again, and additional assumptions are necessary.

26
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1. There is no interaction between x and y
a a-

2. Gaussian lethality function

2 2!. iI 1 (d-X 2+(Yd-Y)2

i i-7" 2

P(r) e a

where (x,y) is the location of target and it is the

*origin here.

( (kill target with laiming realized)
PKI(xty) (n) - ( n rounds ~at (x ,y)a a a a

n
.. 1 - ( PSSKI(xaya))

Since psSKI (Xaya) was given as Equation (2), unconditioning

the above formula on aim point (xa ya) gives the followingb~ ao

result.

p K(n) = 1 - f f (1 - PSSKI(xY))f(aYa)dadYa
-CO -00a

Substituting PSSK I (Xa,Ya) and simplifying the above expression

leads to the following result.

n 2 K-1
p(n) = (K a ) 2 1

K=l Kaav+ /2 22
yd yd ya

2 2
K Vxa

a c2 +Kc2  a + 2+Ka 2

*e x yd ya•e (4)

27aI



(n) has its maximum value when -P = = 0, i.e.,

n 2 K-I

2 1
a2+ 2  +a/~~

xd yd y

1,2 : If axd = yd= 0d and 1xa = 1'ya = 0 in (4), then
22

n K 2 K2 1

•~~ +a KIa +cd a+O+~

If= a ~ a-ndp n 4) de

dd a

This result is identical to the case where the ballistic

error follows a circular normal distribution.

2
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IV. OPTIMIZATION OF KILL PROBABILITY

A. INTRODUCTION

So far, probability models for single shot and salvo fire

against a point target have been examined. It has been ob-

served that these kill probabilities are dependent upon

various parameters and assumptions, and the salvo kill proba-

tility is dependent upon the single shot kill probability.

Therefore, it is attempted in this chapter to examine the

relationships between parameters that maximize the single

shot kill probability.

Since the two dimensional model is an extension of the

one dimensional model, complicated to handle, and the result

of the one dimensional model can be linked to the two dimen-

sional case without much difficulty, the one dimensional model

will be examined. It has been assumed that a firer knows

the exact location of a target, but it is not always true

in the real world. Before going into the case of the unknown

target location, the case of the known location of a point

target will be first examined.

B. KNOWN TARGET LOCATION

The single shot kill probability was defined as follows.

K 2

1 xa2"-Y 2 +2
a a +ad

PSSKIX - a2 d e

29



d x a: "SSdIXa
dx 2 a2 PSS Ix

For some fixed value of a and ad, moving xa (realized aim

point) away from the target center of mass always reduces

the kill probability.

2

d a xaPSdI 2 2i2 )'PSSKlx

SS a a + d a2 +a 0  a

2x
For the first derivative to be positive, (a - ) > 0,

a +ad
i.e.,

It is interesting to note that as ad gets bigger, there is

some threshold in xa beyond which the single shot kill

probability increases.

C. UNKNOWN TARGET LOCATION

This is the case, for example, that a firer engages a

target of which the center of mass is believed to be located

at the origin but the true center of mass is located at x,

the distance from the origin.

ax
I Ix

0 x x xa d Z

Fig. 6. Bias of Target Location
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The same assumptions for the basic model are used again.

SThe lethality function needs to be modified as follows.

i( - x 2
1id Z~

a(r) = e 2 a'

Therefore, the single shot kill probability may be defined

as follows.

1 xd-X 2
SdSSKI 1 d.

a e A

Evaluating this integral gives the following result.

a-
2 a2 +-a2

a a d
SSKIx -e

a ~ /2+T
d

This is the probability that a target located at x will be

killed by a single round of which the aiming point is realized

at xa -

d xa x
x Pss~xl a2 + 2  PSSKIXa

a as~ a +a a

For some fixed value of a and ad in this case, the single

shot kill probability becomes maximum when a firer happens

to aim at the true center of mass; i.e., as (Xa-X ) becomes larger,

31



I

the kill probability decreases. There comes up a question

of how a firer can get xa close to the true center of mass,

x£, in a situation that there exists an uncertainty in the

location of a target; i.e., x£ is unknown. There seems to

be no way of shortening (xa-XZ) with a single round. Thus

it is clear that one can not expect the desired effect by hit

or close hit with a single round.

One way to solve this problem would be the adjusting fire

[i: pp. 14-3] . By adjusting fire it is easy to make x
a

close to x£. It can also be shown that adjusting fire is

more effective than salvo fire. Salvo kill probability for

this point target of unknown location will be summarized as

follows-

2
I K (xZ-1a)• ..

n K K- +K

PK(n) = I (- ) .a. e
d d+ d

Here, the term (xZ-11a) is fixed during the entire period of

salvo fire, whereas it is decreased for each successive round

in adjusting fire.

Another way to solve this problem would be the pattern

fire with artificial dispersion of aiming points, but this

method still raises the question of how far those aiming points

should be separated from one another. These two sugtestions

(adjusting fire and artificial dispersion of aiming points
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for a point target of unknown location) may deserve another

area of investigation. The latter will be investigated in

a simple case where n = 2 in the next chapter.

It is noted that this model of unknown location may be

- viewed in a different way with a slight modification of assump-

tions used. If we assume that the origin is true center of

mass of an area target with a specified size, -L to L, and

x is simply the location of an element, then pSSKIX becomes

the probability that an element located at x£ will be killed

by a single round of which aiming point is realized at xa .

*' This concept may be shown in Fig. 7.

-L 0 xa xd xZ L

Fig. 7. Extension of Concept of Unknown Point Target
to an Area Target
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V. ARTIFICIAL DISPERSION OF AIMING POINTS

A. INTRODUCTION

There have been many attempts to improve the effective-

ness of artillery fire by dispersing aiming points arti-

ficially. However, finding an optimal dispersion is really

a complex problem for which a general solution is not yet

available for all cases of interest. As an extension to

the last chapter, the case of an imperfectly located point

target will be examined and then the case of an area target

in which elements are uniformly or normally distributed

will be examined. One dimensional models will be investi-

gated. For a general solution, n optimal aiming points must

be eobtained but it is almost impossible analytically. So,

the solution is restricted to the case where n = 2.

* B. IMPERFECTLY LOCATED POINT TARGET [3]

Assumptions are as follows.

1. A firer engages a target with unknown precise location

1 x 2

f(x ;0,)a = e

2. n rounds are fired at distinct aiming points

(Ulu 2,-. ,un)

3. distribution of delivery error for the i-th round is:
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d-U

f(xd;uicd) = e

4. lethality function is:

1d 2

2.(r) = e2 a

5. cumulative target damage is negligible.

kill a targetiaim at u. for
- PSSKIx£,u. p at xZ i-th rouhd

12
1 (ui-x)2

-a a +ad

e

For n rounds, aimed at (u1 ,u2,...,un),

PK~x£ ' (UlU 2 '  ,Un) = 1 - (1 -

1 (ui-Xa)

n a + d
= i (i a d

2 ni=l

Unconditioning of p~ U,2..U)over x£results in:

22
1~~( (u-x) 1

1 n
1(l--T a-X 7 2

_n a a e 2 d

35i=l 2

o.a

- •t - |" " U -T " it n of p - l ul . . "-" ' .. ... . . lljmdl, over-:.Am x& z results-.n:



Assuming n = 2 and u= -U 2 = lul

1 .2
2 2 2

= PK(u) = 2a e

2 2
a de

2.1 22+2a 2~ 2

The problem is to find u that maximizes PK(U).

PK(u) = PK(-u)

1 U2 u2

d (u)  -2au a 4C 4 0d 2a2u a
S2 d)( 2 2 3/2 a + +4 2(a d  (ad 2Z

iextremen at u, when pk(u) = 0
...... PK (u) is dexremeng

:a22 02
By putingA

By2 -B= -A-, and v -s-,'inequality can be
a adseen in an easy wa .

' increasing 2 ) 3/2

PK(u) is extrem at u, when v (+B) ( ZiA) in (A+l)3/2* decreasing) (A2) B B+lAI-2

"r£ Let v increase from 0 to . If inside of the logarithm is less

Lthan one, then pK(u) always decreases as u increases.
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pi(u) = 0, when u = 0, or

V 2 2(+B) (l+A) in A+I)3/2
(A+2)B VB+lAVAW

In this case the optimal will be at u = 0, i.e., it is better

not to disperse aiming points.

If the inside of the logarithm is greater than one, then

we have first <, =, and finally > in the above inequalities.

That is, pK(u) is first increasing, at extreme, and then de-

creasing. In other words, PK(u) is at a maximum when therK

relationship = holds. So, the optimal dispersion of two

rounds for an imperfectly located point target will be at

the following points____ ____ (A l
ul = (l+B) (l+A) (A+) 3 1/2

ad(A+2) B 2
(B+l) A2 (A+2)

These results suggest that when one doesn't know the location

"* of a target precisely, bracketing a target would do better.

C. AREA TARGET

1. General Model Description

Examination of an area target involves additional

considerations of the distribution of elements and the size

of a target. Before going into the specific cases of uniform

or normal distribution, a model of an area target will be

developed.
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-W0  x 0 u. xd  W0

Fig. 8. One Dimensional Area Target Description

Additional assumptions to those used in the previous section

are:

1. x is the location of an element of an area target

(known location)

2. the center of mass is the origin

3. --W0 to W0 is the size of a target

4. g(x) is the probability distribution of elements.

P an element at x a round denotes at xd)PSSKlXXdo' U P (will be killed Iwith aiming at ui

1 X-Xd 2

= £(x-xd) = e a

P( an area targetia round detonates at xd)PSSKIXd,Ui  will be killed with aiming at u

x-x 2.~ W0  d (K-

f J g(x).e dx
-W0

area target
"SSKu i  w Pwill be killed a

im ing at ui)
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= J- d ~~ 2 d dd

2 ~ a'O d

Manipulating inside of the double integral,

gx)[__ 2 xd u 2

-d fd d

1 -W /a

0 0

mdx

eent at x.
PSSK Ix, ui =we be killed a-ming at d)

(%-u 2

add

This conditional probability is the same as that developed in

the case of an imperfectly located target. Thus,

1 (x-u 2

-- 0  a a+ d(
-."" u= f g(x) e (5d

0 +-Wa .

2
For n ,-2, u 1 -Ui(1 p (6)K- 

2  i=l i
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Simplification of equation (5) is not easy because of the

sharply defined area, -W to W0. Thus, an approximation

procedure will be introduced.

i 2. Diffuse Target Approximation

By replacing sharply defined area target by a diffuse

target, evaluation of the integral in (5) becomes easy. It

doesn't cause any great differences in the result. As to

the function which expresses this continuous variability of

the effect on a diffuse target, it is proposed to use a
x 2 2
-/WGaussian distribution, e

x
-wo 0 w0

Fig. 9. Diffuse Target Approximation

This modification can be supported by the following arguments.

Discrepancies in two areas can further be decreased by

adjusting W so that the two areas be equal.

"" W0

f f dx = f e - X2 / W  dx
-W0  -C

4 2W0 =W./ W = W = 1.13 W0

i40
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This numerical result (i.e., nearness of the factor 1.13 to

1) indicates that such an adjustment of W is not likely to

cause a great change and the approximation need not at all

- be more remote from reality than the original situation if

further possibilities are taken into consideration. For

example, if the width W of a target .is not precisely known,
0

if W is not sharply defined because of irregular shape of

the target, etc.

3. Uniform Distribution of Target Elements

1In this, the distribution of the elements, g(x) =
2W0

1 (x-ui)2
W0  2 2 2

!0= 1 O a +od

f~~ a dd
d

x-u 2

2 2 20 a e a +ad  -x2/W2
e e dx

d

Evaluating this integral leads to the following result.

2
U.[. 3.

Pss~~lui 2 ° +
a +W +2(a +

PSSK~u1  1 -. ~ _ed

VV VW2+2(a2 +717

Id
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Considering the case where n = 2,

2
U.

22 2

K u'2i--1 222
'WO +2+(a (a d

d

Assuming that u -U

2
U

PKIpu = p(u) ai _ (2e d2 2(

,uWoW 2'+2 (a 4od)

2u
2

-. e

PK(u) = PK (-u )

There comes up a question of what values of u give the maximum

PK(u)

2
UW2 ( a2+G 2 )

d aW/" -4u
(u) = -e

"'4 aWv u t d;
-.:+ e)V/-2W (~W2+2 (a2 + 2 )) 3/ 2

0d) 422



,' " /increasing

It is clear that PK(u) is extreme at u, whendecreasing

pk(u) (=) 0; i.e., when

[W 2+2(a2+o) ] in aWv/T > 2
d_ = )u

':i Jg~vWoV7W2+ a d)

Let u increase from 0 to . If inside of the logarithm is

less than one, then a relationship < holds; i.e., pK(u) is

always decreasing as u increases. In this case, it is not

proposed to disperse aiming points. If the inside of the

logarithm is greater than one, we have first >, =, and finally

<. But this never happens because the inside of the logarithm

is always less than one; i.e.,

aW,/Wr aV2 <

1/2W VW2 +2(a 2 +,j2) VW2 +2(2+,2)

This result suggests one should aim at the origin instead of

dispersing aiming points.

This suggestion contradicts the intuition that some

dispersions of the aiming point might achieve greater kill

of an area target. That is, if the model is considered in

terms of cookie cutter lethality function, then it is clear

that some dispersions, lul, would do better than 2 rounds of

impact on the same point (origin). This contradiction is
4 mainly due to the assumption that cumulative damage is
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negligible, that is, once killed elements can be killed

again, and also the Gaussian lethality function.

-w0  -u 0 0

Fig. 10. Cookie Cutter Drops on Uniform Target

As a treatment to this problem, a suggestion .is

possible. The lethal effect of 2 rounds detonated at the

same point will be approximately the same as that of one

round, looked at from the mathematical point of view.

Therefore, it is suggested that one round be aimed at the

origin uI , and then the aiming points be dispersed su,:h t.iat

u2 and u3 in Fig. 11 be the centers of the surviving area

target, b to W0 and a to -W0, and so on.

-W u' a" lr,> 1i W0 3 0 2  0

Fig. 11. Suggestion for Uniform Target

4. Normal Distribution of Target Elements

In this case, the distribution of the elements of an

area target (linear) is as follows.

44
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glx) e

v 2 .!2

S1c 2  1i(x-u

1 0 aa-.

•SSI CU. -f e - e d

1 1 (x-u.)

1 0  -e x a e ddx

Evalutating this integral leads to the following result.

~22 f2+W2) 2a2

PSSKI1 l /22 aWe ( a 2

V(a f- 2-ax"' "x

Considering the case where n = 2,
h2

1 (2a 2+W2 )U2

2 (a2 +a 2 )(2a 2+W2)+W2oj211 d W x

l(a 22 (2a2+W2)+W2 a
d x x

assuming that uI = -u2 = ul,

.
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PK (u) =aW

..l "V._#C 2) 42 2)+W 2
d x x

1 (2a 2 )U 2  1 2(a 2W 2)u 2

2T )(a2V)+2 2 2 2 2W2 Wc
(e (a -a xaW(a +C (2 2)x

x (2eV(a 2 +c2) (2ca24W2 )+c a X

There comes up a question of what values of u give

the maximum p (u ) .
LK

d aWMuP PK(u) =
S(a2+2 (22+2 +WG

"1 (2a 2 +  w 2 ) u 2

2 22
(a2+°2 (2((+o' 2W+W)u

2(2o W1)u2 (2x) u2o+ +

22 (a2 2 2 2 2
x d x x

a22 (a 2 2 2 e

ta +cy1)__2(2o 2 +)+Wua

2aW(2aa 2 W22 )u

.. ~ 2~ 22/ ed x

i"< / increasing)
It is clear that PK(U) is t extreme Jat u, when

(:.) decreasingI2(a 2 a~(a~W2 + 2  a2 ()22W) W
2a2 +W2  x a2 2 (a r-VWT(2

2. 2)(u (2 O;W iW212.,/
(a +add .)

X
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Let us vary from 0 to =. If the inside of the logarithm is

less than one, then a relationship < holds; i.e., PK(u) is

always decreasing as u increases. In this case, it is not

proposed to disperse aiming points. If the inside of the

logarithm is greater than one, we have first <, = , and finally

>. But it never happens because

aW <1

V(a 2+ad )(2a +W2 )+W2 Gd2

This result suggests one should aim at the origin instead of

dispersing aiming points.

This suggestion contradicts with the intuition that

some dispersions of aiming point might achieve greater kill

of an area target. That is, if this model is considered in

terms of cookie cutter lethality function, then it is clear

that some dispersions, Jul, would do better than 2 rounds of

impact on the same point (origin). This contradiction is

mainly due to the assumption that cumulative damage is negli-

gible and also the Gaussian lethality function. Probability

distribution of elements may also contribute to this result

of lul being close to the origin.

'. 6 . A g(x)

-W0  -u 0 u W0

Fig. 12. Cookie Cutter Drops on Normal Target
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As a treatment to this problem, a suggestion is

possible. The lethal effect of 2 rounds detonated at the

same point will be approximately the same with that of one

round from the mathematical point of view, rather than from

-the real point of view. Therefore, it is suggested that one

round be aimed at the origin (center of mass), u1, and then

*. disperse the aiming points, u2 and u3 for the remaining

elements as shown in Fig. 13.

g (x)

.-"- W 0  u 0 u 3  W 0-0 U 2  0 3  0
U1

Fig. 13. Suggestion for Normal Target

44.
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VI. CONCLUSIONS

For a point target of known location, aiming at the center

of mass achieves greater chance of a kill. For a point

target of unknown location, adjusting or pattern fire would

do better, but salvo fire is not effective. For an area

target in which elements are uniformly or normally distri-

buted, it is suggested to aim at the center of mass and

- -thereafter to disperse the aiming points for the surviving

elements of the target.
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